Abstract
By neutron spin echo (NSE) and pulsed field gradient (PFG) NMR, we study the dynamics of a polyethylene-oxide melt (PEO) with a molecular weight in the transition regime between Rouse and reptation dynamics. We analyze the data with a Rouse mode analysis allowing for reduced long wavelength Rouse modes amplitudes. For short times, subdiffusive center-of-mass mean square displacement ⟨rcom2(t)⟩ was allowed. This approach captures the NSE data well and provides accurate information on the topological constraints in a chain length regime, where the tube model is inapplicable. As predicted by reptation for the polymer ⟨rcom2(t)⟩, we experimentally found the subdiffusive regime with an exponent close to , which, however, crosses over to Fickian diffusion not at the Rouse time, but at a later time, when the ⟨rcom2(t)⟩ has covered a distance related to the tube diameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.