Abstract

We report the enzymatic synthesis of α-D-glucopyranosyl-(1→4)-α-L-rhamnopyranoside and α-D-glucopyranosyl-(1→3)-α-L-rhamnopyranoside by using a wild-type transglucosidase in combination with glucoamylase and glucose oxidase. It was shown that Bacillus circulans 251 cyclodextrin glucanotransferase (CGTase, EC 2.1.4.19) can efficiently couple an α-L-rhamnosyl acceptor to a maltodextrin molecule with an α-(1→4) linkage, albeit in mixture with the α-(1→3) regioisomer, thus giving two glucosylated acceptors in a single reaction. Optimisation of the CGTase coupling reaction with β-cyclodextrin as the donor substrate and methyl or allyl α-L-rhamnopyranoside as acceptors resulted in good conversion yields (42-70%) with adjustable glycosylation regioselectivity. Moreover, the efficient chemical conversion of the products of CGTase-mediated cis-glucosylation into protected building blocks (previously used in the synthesis of O-antigen fragments of several Shigella flexneri serotypes) was substantiated. These novel chemoenzymatic strategies towards useful, convenient intermediates in the synthesis of S. flexneri serotypes 2a and 3a oligosaccharides might find applications in developments towards synthetic carbohydrate-based vaccine candidates against bacillary dysentery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.