Abstract

Pectins are critical polysaccharides of the cell wall that are involved in key aspects of a plant's life, including cell-wall stiffness, cell-to-cell adhesion, and mechanical strength. Pectins undergo methylesterification, which affects their cellular roles. Pectin methyltransferases are believed to methylesterify pectins in the Golgi, but little is known about their identity. To date, there is only circumstantial evidence to support a role for QUASIMODO2 (QUA2)-like proteins and an unrelated plant-specific protein, cotton Golgi-related 3 (CGR3), in pectin methylesterification. To add to the knowledge of pectin biosynthesis, here we characterized a close homolog of CGR3, named CGR2, and evaluated the effect of loss-of-function mutants and over-expression lines of CGR2 and CGR3 in planta. Our results show that, similar to CGR3, CGR2 is a Golgi protein whose enzyme active site is located in the Golgi lumen where pectin methylesterification occurs. Through phenotypical analyses, we also established that simultaneous loss of CGR2 and CGR3 causes severe defects in plant growth and development, supporting critical but overlapping functional roles of these proteins. Qualitative and quantitative cell-wall analytical assays of the double knockout mutant demonstrated reduced levels of pectin methylesterification, coupled with decreased microsomal pectin methyltransferase activity. Conversely, CGR2 and CGR3 over-expression lines have markedly opposite phenotypes to the double knockout mutant, with increased cell-wall methylesterification levels and microsomal pectin methyltransferase activity. Based on these findings, we propose that CGR2 and CGR3 are critical proteins in plant growth and development that act redundantly in pectin methylesterification in the Golgi apparatus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.