Abstract

In order to study the impact of the wind speed and turbulence model on the numerical simulation of the aerodynamic characteristics for the wind turbine, SST k–ω and transition SST turbulence models were used to numerically simulate the aerodynamic characteristics at 7 m/s, 10 m/s and 20 m/s inlet wind speed, and the numerical results were compared with the experimental results. The results show that as the low inlet wind speed, no flow separation occurs over most of the blade surface, and SST k–ω and transition SST turbulence models can accurately predict the aerodynamic characteristics of the blades. As the low inlet wind speed, the flow separation mainly occurs around the root and the middle of blade, and numerical results at the leading edge by SST k-ω turbulence model and near the trailing edge by transition SST turbulence model match the experimental results well. When most of the flow through the blade surface is completely separated, the numerical simulation results by both SST k–ω and transition SST turbulence models have certain differences with experiment results, and the deviations are mainly concentrated on the suction surface and decrease gradually from the blade root to the tip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.