Abstract

The investigation reported in this paper includes the variation of transient and local heat transfer coefficient and heat flux in the combustion chamber of a spark ignition (SI) engine. Heat transfer characteristics are obtained from the Kiva-3v CFD (Computational Fluid Dynamics) code. Instantaneous results including the variations of mean heat transfer coefficient on the piston surface, combustion chamber, and wall of the cylinder are presented. Moreover, variations of the local heat transfer coefficient and heat flux along a centerline on the piston as well as a few locations on the combustion chamber surface are shown. It is illustrated that maximum heat transfer coefficient on the piston and combustion chamber surfaces varies with location and also it is observed that the initial high rate of increase of heat flux at any position is related to the instant of flame arrival at that position. In this work, the major focus is on the determination of the locations where heat flux and heat transfer are maximum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.