Abstract

A supercritical water oxidation (SCWO) reactor containing a hydrothermal flame as heat source is simulated by computational fuild dynamics (CFD) simulation. Methanol solution and oxygen are fed separately into the reactor as fuel and oxidizer, and at the same time the cold waste water is also fed into the reactor. The combustion of methanol is simulated by the eddy dissipation concept (EDC) model with an Arrhenius law kinetic. This simulation is conducted to study the behavior of the hydrothermal flame at different inlet fuel temperatures and the relationship between the ignition temperature and methanol mass fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.