Abstract

A Eulerian multiphase model was used to study the hydrodynamics of the gas–solids flow in a circulating fluidized bed (CFB) furnace. Alternative modeling approaches were tried to evaluate their effects on the predicted solids distribution in the furnace. Due to high computational costs, large scale calculations are commonly performed by using a coarse mesh, which leads to too uniform solids flow field and an overestimated gas–solid drag force. Thus, a suitable form of correction of the gas–solid drag is needed for coarse mesh simulations. This study presents fluid dynamics simulations of a 235MWe CFB furnace by two sets of interphase momentum exchange coefficients: the model based on the homogeneous flow condition and the model based on the energy-minimization multi-scale (EMMS) approach. The calculations with one solid phase included studies with two mesh resolutions and different particle sizes. Additional simulations were performed using two solid phases and four solid phases to analyze the effect of polydispersity of particles. The model results were compared with the measured vertical pressure profile of the furnace and the locally measured solid concentration and velocity profiles. The results show that with a homogeneous model, the model matches better with measurements if the mesh resolution is finer. The EMMS approach can be used to improve the calculations in a coarse mesh if the average particle size can be determined correctly for the model. With multiple solid phases, the vertical and horizontal segregation could be simulated. However, increasing the number of solid phases did not change the total solid concentration and pressure profiles if the Sauter mean diameter of the total system was constant. The results indicate that with a coarse mesh, similar drag corrections would be necessary between the solid phases that have been developed for gas–solid drag.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.