Abstract

Abstract Desupersaturation is a complex cooling operation that involves hydrodynamic, thermal and mechanical phenomena. This process requires continuous agitation to avoid fouling problems and sludge deposition. The current work aims to investigate the well mixedness in the desupersaturation tank for optimal performance. For this purpose, a multi-fluid CFD study was conducted based on the Euler–Euler modeling approach, considering a multi-phase flow involving a liquid phase (phosphoric acid) and a poly-dispersed solid phase, i.e. a sludge with three different sizes where each size is considered as a separate phase. First, the hydrodynamic behavior of the flow within the agitated desupersaturator is analyzed through the investigation of the velocity fields as well as the power and pumping numbers, to determine both the agitator capacity to pump the flow and its power consumption during the operation. Then, in order to assess the mixture homogeneity, we evaluated the solid suspension in the desupersaturation reactor following conventional methods and two new proposed methodologies: the first approach is to evaluate the suspension quality in the mixing system by compartment and the second consists on the assessment of the uniform convergence of the solid concentration. Furthermore, we calculated the time required to achieve a full suspension at different solid concentrations. On other hand, we conducted a detailed analysis of the solid distribution dependency on the impeller rotational speed at different solid volume fraction, which allows a good understanding of the parameters controlling the homogenization in the desupersaturator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.