Abstract

Food grains naturally undergo physical and structural changes during a drying process. The volumetric change of particles or particle shrinkage is one of the important and complicated physical changes in drying. In this work, a shrinkage model for particle diameter reduction is incorporated into the computational fluid dynamics- discrete element method (CFD-DEM) drying model for food grains. First, mixing, general drying and shrinkage characteristics including particle and air moisture content, and particle diameter variation are reproduced. Then, the model is tested by comparing the predicted moisture reduction and volume shrinkage curve with the experimental data of wheat from the literature. The results demonstrate the capability of the current model in predicting drying and particle shrinkage characteristics. Finally, the effects of inlet air temperature and velocity on drying and particle shrinkage are studied. It is revealed that the shrinkage rate increases significantly with increasing air temperature but increases slightly with increasing inlet air velocity. The uniformity of grain size, quantified here by the standard deviation of the particle diameter distribution, increases with decreasing air temperature or increasing air velocity. This grain scale drying model with particle shrinkage should be useful for the design and control of many drying processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.