Abstract

This paper presents a numerical analysis of the inlet-combustor interaction and flow structure through a scramjet engine at a flight Mach 6 with cavity based injection. Fuel is injected at supersonic speed of Mach 2 through a cavity based injector. These numerical simulations are aimed to study the flow structure, supersonic mixing and combustion for cavity based injection. For the reacting cases, the shock wave pattern is modified which is due to the strong heat release during combustion process. The shock structure and combustion phenomenon are not only affected by the geometry but also by the flight Mach number and the trajectory. The inlet-combustor interaction is studied with a fix location of cavity based injection. Cavity is of interest because recirculation flow in cavity would provide a stable flame holding while enhancing the rate of mixing or combustion. The cavity effect is discussed from a view point of mixing and combustion efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.