Abstract

The paper proposes a combined approach between numerical modeling and experimental measurements for the analysis of a cogeneration system based on the reaction of liquid aluminum and water steam. Scrap aluminum is used for hydrogen production and the primary one is employed as an energy carrier to transport the energy from the alumina reduction system to the site of the suggested plant. The analysis focuses on the liquid aluminum injection phase immediately downstream the nozzle.High frequency thermo-cameras are employed to qualitatively assess the thermal behaviour the liquid aluminum jet. Fast imaging techniques are used to capture the multiphase flow pattern of the liquid metal jet during the injection phase.The experimental results are used to validate a 2D multi-phase CFD approach. The computational fluid dynamics model of the injection phase is created and used to extend the measurements and deepen the understanding of the thermo-fluid dynamics behaviour of the system. In particular, the influence of different nozzles diameters and different injection pressures on the liquid aluminum jet is investigated.A modular approach is adopted for the domain subdivision in order to represent accurately all the geometrical features, while the volume of fluid approach is used to model the multi-phase flow distribution in the real geometry under actual operating conditions. Finally, a good agreement between the measurements and the calculations is found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.