Abstract

Abstract The baffle plate is the most important elements affecting not only the thermal efficiency but also the hydraulic performance of shell-tube heat exchangers that can be designed in different types today and can be put into the production phase. Different designs of baffle plates are closely related to thermal performance with pressure drop as well. In this investigation, the design geometry of the shell-tube type was carried out by means of the ANSYS Fluent program. In the analyses, it is purposed to examine the consequences on the heat transfer rate per drop of pressure and not only the pressure’s drop but also the coefficient parameter of heat transfer of the exchangers in which traditional one-piece type baffle plate and perforated type baffle plate are used where the shell side. Here, water is used as the working fluid; it was examined as 1.2, 1.5, 1.8 and 2.1 kg/h at four varied mass flow rates (m). As a result, the values compared to the traditional one-piece baffle plate and the perforated type baffle plate. It has been monitored that the heat transfer rates per drop of pressure vary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.