Abstract

Osteoclasts are responsible for bone erosion in diseases as diverse as osteoporosis, periodontitis, and rheumatoid arthritis. Antiseptic products have received recent attention as potential therapeutic and preventive drugs in human disease. The purpose of this study was to investigate the effect of the antiseptic cetylpyridinium chloride (CPC) on osteoclast formation using mouse bone marrow-derived macrophages (BMMs). CPC inhibited receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced osteoclast formation in a dose-dependent manner without causing cytotoxicity. The mRNA expression of cathepsin K, calcitonin receptor (CTR), and Prdm1 in osteoclasts was reduced by CPC. In experiments to elucidate its mechanism of action, CPC was found to suppress RANKL-induced expression of c-Fos and nuclear factor of activated T cells (NFATc1), transcription factors that are essential for osteoclast differentiation. CPC also inhibited RANKL-induced activation of extracellular signal-regulated kinase (ERK) and NF-κB and expression of cyclooxygenase (COX)-2. These results collectively suggest that CPC inhibits osteoclast differentiation by suppressing the activation of ERK and NF-κB and reducing the expression of COX-2, c-Fos, and NFATc1. CPC may therefore be a useful drug in the prevention of bone loss.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.