Abstract
The use of appropriate charge carrier transport materials in organic solar cells strongly influences the device performance. In this work, we focused on the molecular electron transport material 1,4,5,8-naphthalene-tetracarboxylic-dianhydride (NTCDA) doped by cesium carbonate (Cs2CO3). We first investigated the electrical properties of such n-type doped material as a function of the doping concentration before using it as electron transport layer (ETL) in polymer solar cells. The doped transparent ETL reduces the series resistance leading to an increased open circuit voltage. A power conversion efficiency of 3.8% was finally achieved in a device with a blend of poly(3-hexylthiophene-2,5-diyl):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) as the active layer and a 5nm-thick NTCDA:Cs2CO3 film with a molar ratio of 30% as ETL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.