Abstract

The novelty of the present research consists in the possibility of obtaining cerium-doped hydroxyapatite/collagen coatings on the titanium support, to improve the performance of the bone implants. These coatings were deposited on the titanium surface by biomimetic method using a modified supersaturated calcification solution (SCS) additionally containing a cerium source and collagen. Prior to the deposition of the apatite layer, an alkali ÷ thermal oxidation pretreatment has been applied to ensure an increase in the bioactivity of the titanium surface. The coatings were examined by scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The EDX and XRD investigations of the coatings indicated that cerium was incorporated in the hydroxyapatite lattice. The collagen presence in the coatings was confirmed by FTIR analysis. The cerium-doped hydroxyapatite/collagen coatings showed good antibacterial efficacy against Escherichia coli and Staphylococcus aureus bacteria, being more effective against Escherichia coli. These coatings have a significant potential to be used in the dental and orthopedic implants, as the osseointegration depends on much more factors than simple formation of hydroxyapatite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.