Abstract
Zirconia implants are recognized for their excellent biocompatibility, aesthetics, and favorable mechanical properties. However, the effects of zirconia surfaces on osteogenesis, particularly in the presence of macrophages, are still not well understood. This study compares two types of zirconia surfaces—ceria-stabilized zirconia/alumina nanocomposite (NANO-Zr) and 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP)—with titanium (Ti) substrates. Both zirconia surfaces promoted macrophage adhesion and proliferation, facilitated a shift from M1 to M2 polarization, and created an immune microenvironment conducive to osteogenesis by downregulating IL-6 and TNF-α and upregulating IL-10 and TGF-β gene expression. In macrophage co-cultures, both zirconia surfaces also supported osteoblast adhesion and proliferation, with NANO-Zr notably enhancing osteogenic differentiation and mineralization. These results highlight NANO-Zr as a promising candidate for future dental and orthopedic implant applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.