Abstract

Brain regional oxidative damage is thought to be a central mechanism in the pathogenesis of Alzheimer's disease (AD). Recent studies of cerebrospinal fluid (CSF) have suggested that increased lipid peroxidation of CSF and CSF lipoproteins also may occur in AD patients. In the present study, we determined the susceptibility of human CSF to ex vivo lipid peroxidation and tested the hypothesis that oxidized CSF lipoproteins may be neurotoxic. Whole CSF or a CSF lipoprotein fraction (d < 1.210 g/mL) was oxidized with 2,2'-azobis(2-amidino-propane)dihydrochloride (AAPH), a hydrophilic free-radical generator. Kinetics of CSF lipid peroxidation were followed by a standard fluorescence product accumulation assay. Oxidation of AD CSF yielded significantly shorter fluorescent lag times than controls, indicating reduced antioxidant capacity. Electrophoretic mobilities of CSF apolipoproteins were specifically reduced upon oxidation of CSF with AAPH, suggesting that lipoproteins are primary targets of CSF lipid peroxidation. Cultured neuronal cells were exposed to physiological concentrations of isolated CSF lipoproteins oxidized with increasing concentrations of AAPH; the resulting neurotoxicity showed a significant linear AAPH concentration-response relationship. These results suggest that oxidized CSF lipoproteins may contribute to the pathogenesis of neurodegeneration in AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.