Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder. Emerging evidence implicates β-amyloid (Aβ) plays a critical role in the progression of AD. In this study, we investigated the protective effect of cerebrosides obtained from sea cucumber against senescence-accelerated mouse prone 8 (SAMP8) mice in vivo. We also studied the effect of cerebrosides on Aβ-induced cytotoxicity on the rat pheochromocytoma cell (PC12) and the underlying molecular mechanisms. Cerebrosides ameliorated learning and memory deficits and the Aβ accumulation in demented mice, decreased the content of malondialdehyde (MDA), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG), 8-hydroxy-2'-deoxyguanosine (8-oxo-G), and nitric oxide (NO), and enhanced the superoxide dismutase (SOD) activity significantly. The neuroprotective effect of sea cucumber cerebrosides (SCC) was also verified in vitro: the cerebrosides increased the survival rate of PC12 cells, recovered the cellular morphology, downregulated the protein levels of Caspase-9, cleaved Caspase-3, total Caspase-3, and Bax, and upregulated the protein level of Bcl-2, revealing that cerebrosides could inhibit Aβ-induced cell apoptosis. The results showed the protective effect of SCC was regulated by the mitochondria-dependent apoptotic pathway. Our results provide a new approach to developing the marine organisms as functional foods for neuroprotection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.