Abstract

We determined whether cerebral blood flow (CBF) remained related to arterial O2 content (CaO2) during hypoxic hypoxia when hematocrit and hemoglobin concentration were independently varied with cell-free, tetramerically stabilized hemoglobin transfusion. Three groups of pentobarbital sodium-anesthetized cats were studied with graded reductions in arterial O2 saturation to 50%: 1) a control group with a hematocrit of 31 +/- 1% (mean +/- SE; n = 7); 2) an anemia group with a hematocrit of 21 +/- 1% that underwent an isovolumic exchange transfusion with an albumin solution (n = 8); and 3) a group transfused with an intramolecularly cross-linked hemoglobin solution to decrease hematocrit to 21 +/- 1% (n = 10). Total arterial hemoglobin concentration (g/dl) after hemoglobin transfusion (8.8 +/- 0.2) was intermediate between that of the control (10.3 +/- 0.3) and albumin (7.2 +/- 0.4) groups. Forebrain CBF increased after albumin and hemoglobin transfusion at normoxic O2 tensions to levels attained at equivalent reductions in CaO2 in the control group during graded hypoxia. Over a wide range of arterial O2 saturation and sagittal sinus PO2, CBF remained greater in the albumin group. When CBF was plotted against CaO2 for all three groups, a single relationship was formed. Cerebral O2 transport, O2 consumption, and fractional O2 extraction were constant during hypoxia and equivalent among groups. We conclude that CBF remains related to CaO2 during hypoxemia when hematocrit is reduced with and without proportional reductions in O2-carrying capacity. Thus O2 transport to the brain is well regulated at a constant level independently of alterations in hematocrit, hemoglobin concentration, and O2 saturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.