Abstract

Although there is increasing evidence suggesting that there may be subtle abnormalities in idiopathic generalized epilepsy (IGE) patients using modern neuroimaging techniques, most of these previous studies focused on the brain grey matter, leaving the underlying white matter abnormalities in IGE largely unknown, which baffles the treatment as well as the understanding of IGE. In this work, we adopted multiple methods from different levels based on diffusion tensor imaging (DTI) to analyze the white matter abnormalities in 14 young male IGE patients with generalized tonic-clonic seizures (GTCS) only, comparing with 29 age-matched male healthy controls. First, we performed a voxel-based analysis (VBA) of the fractional anisotropy (FA) images derived from DTI. Second, we used a tract-based spatial statistics (TBSS) method to explore the alterations within the white matter skeleton of the patients. Third, we adopted region-of-interest (ROI) analyses based on the findings of VBA and TBSS to further confirm abnormal brain regions in the patients. At last, considering the convergent evidences we found by VBA, TBSS and ROI analyses, a subsequent probabilistic fiber tractography study was performed to investigate the abnormal white matter connectivity in the patients. Significantly decreased FA values were consistently observed in the cerebellum of patients, providing fresh evidence and new clues for the important role of cerebellum in IGE with GTCS.

Highlights

  • Determined, idiopathic generalized epilepsy (IGE) constitutes nearly one third of all epilepsies and is typically characterized by absence, myoclonic and generalized tonic-clonic seizures (GTCS), alone or in varying combinations and severity, which may cause severe injuries even death [1,2,3,4]

  • A significant decrease in the Fractional anisotropy (FA) values was found to be located in the right cerebellum and the right brainstem in the IGE patients (Fig. 1)

  • Decreased FA values were consistently observed in the cerebellum of patients

Read more

Summary

Introduction

Determined, idiopathic generalized epilepsy (IGE) constitutes nearly one third of all epilepsies and is typically characterized by absence, myoclonic and generalized tonic-clonic seizures (GTCS), alone or in varying combinations and severity, which may cause severe injuries even death [1,2,3,4]. With the progress in structural and functional neuroimaging over the last decade, more and more studies suggest that there may be subtle abnormalities in IGE (reviewed in [6]), most of these previous imaging studies focused on the brain grey matter, leaving the underlying white matter abnormalities in IGE largely unknown. Fractional anisotropy (FA), which is derived from DTI, has been shown to reflect functionally relevant micro-structural properties of white matter, including axonal architecture, the extent of myelination and the density of axonal fibers comprising axonal bundles [14] and has been interpreted as a measure of microstructural integrity [15,16]. The continuity of individual white matter fibers in three-dimensional space can be estimated using white matter tractography [17,18,19,20,21], making tract-based analysis of white matter connectivity possible

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.