Abstract

Despite being a relatively new technology, low-cost 3D printing has exhibited a significant impact on many facets of daily life. 3D printing has gained its popularity due to its ease of designing, quick prototyping, and waste reduction. In this study, we synthesized CeO2/BaMoO4 nanocomposite and characterize it with UV–vis, XRD, and SEM. Band gap of CeO2/BaMoO4 was found as 3.17 eV, showing an excellent semiconductor behavior. We also fabricated affordable 3D-printed working electrodes for application in dopamine hydrochloride detection. CeO2/BaMoO4 were modified onto 3D-printed electrodes and commercially purchased screen-printed electrodes to compare its applicability in dopamine detection. Electroactive surface areas were enhanced by addition of CeO2/BaMoO4. In linear range of 5–1000 μM, limit of detection values were found as 4.52 μM and 2.77 μM for CeO2:BaMoO4/SPE and CeO2:BaMoO4/3DPE biosensors, respectively. Sensitivity was calculated as 8.7285 and 0.3142 A/M.cm2 for CeO2:BaMoO4/SPE and CeO2:BaMoO4/3DPE, respectively. Both devices have shown significant reproducibility, repeatability and selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.