Abstract

BackgroundMuscle fibres are formed by elongation and fusion of myoblasts into myotubes. During this differentiation process, the cytoskeleton is reorganized, and proteins of the centrosome re-localize to the surface of the nucleus. The exact timing of this event, and the underlying molecular mechanisms are still poorly understood.ResultsWe performed studies on mouse myoblast cell lines that were induced to differentiate in culture, to characterize the early events of centrosome protein re-localization. We demonstrate that this re-localization occurs already at the single cell stage, prior to fusion into myotubes. Centrosome proteins that accumulate at the nuclear surface form an insoluble matrix that can be reversibly disassembled if isolated nuclei are exposed to mitotic cytoplasm from Xenopus egg extract. Our microscopy data suggest that this perinuclear matrix of centrosome proteins consists of a system of interconnected fibrils.ConclusionOur data provide new insights into the reorganization of centrosome proteins during muscular differentiation, at the structural and biochemical level. Because we observe that centrosome protein re-localization occurs early during differentiation, we believe that it is of functional importance for the reorganization of the cytoskeleton in the differentiation process.

Highlights

  • Muscle fibres are formed by elongation and fusion of myoblasts into myotubes

  • Microtubule reorganization is paralleled by reorganization of centrosomal proteins: myoblasts possess a morphologically recognizable centrosome with characteristic marker proteins concentrated in the pericentriolar material, whereas myotubes show perinuclear localization of a

  • The centrosomal proteins of both cell lines were found in a single focus within the pericentriolar material adjacent to the nucleus, while the protein PCM-1 ("pericentriolar material protein 1") localized to multiple 'centriolar satellites', as described by [13] and [14]

Read more

Summary

Introduction

Muscle fibres are formed by elongation and fusion of myoblasts into myotubes During this differentiation process, the cytoskeleton is reorganized, and proteins of the centrosome re-localize to the surface of the nucleus. The formation of muscle during embryonic development involves the differentiation of myoblasts into long, fibrous cells. In this differentiation process, myoblasts withdraw from the cell cycle and fuse into multinucleate, syncytial myotubes [1]. It has been reported that reorganization of microtubules and relocalization of centrosome proteins to the nuclear surface occurs after fusion of myoblasts into myotubes [8]. The precise kinetics of this reorganization are unknown Morover, it is unknown how centrosome proteins are attached to the nuclear surface, and how they are organized at the ultrastructural level

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.