Abstract

Chromosome segregation ensures that DNA is equally divided between daughter cells during each round of cell division. The centromere (CEN) is the specific locus on each chromosome that directs formation of the kinetochore, the multiprotein complex that interacts with the spindle microtubules to promote proper chromosomal alignment and segregation during mitosis. CENs are organized into a specialized chromatin structure due to the incorporation of an essential CEN-specific histone H3 variant (CenH3) in the centromeric nucleosomes of all eukaryotes. Consistent with its essential role at the CEN, the loss or up-regulation of CenH3 results in mitotic defects. Despite the requirement for CenH3 in CEN function, it is unclear how CenH3 nucleosomes structurally organize centromeric DNA to promote formation of the kinetochore. To address this issue, we developed a modified chromatin immunoprecipitation approach to analyze the number and position of CenH3 nucleosomes at the budding yeast CEN. Using this technique, we show that yeast CENs have a single CenH3 nucleosome positioned over the CEN-determining elements. Therefore, a single CenH3 nucleosome forms the minimal unit of centromeric chromatin necessary for kinetochore assembly and proper chromosome segregation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.