Abstract

AbstractCentroidal Voronoi Tessellation (CVT) of points has many applications in geometry processing, including re‐meshing and segmentation, to name but a few. In this paper, we generalize the CVT concept to graphs via a variational characterization. Given a graph and a 3D polygonal surface, our method optimizes the placement of the vertices of the graph in such a way that the graph segments best approximate the shape of the surface. We formulate the computation of CVT for graphs as a continuous variational problem, and present a simple, approximate method for solving this problem. Our method is robust in the sense that it is independent of degeneracies in the input mesh, such as skinny triangles, T‐junctions, small gaps or multiple connected components. We present some applications, to skeleton fitting and to shape segmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.