Abstract

Developed from soft lithography, replica molding has been proven to be a good method to prepare micron- and submicron-sized features. However, the fidelity of the features can be compromised by incomplete feature cavity filling and feature shrinkage during the forming process. In this study, centrifuge-aided micromolding is developed to prepare micron- and submicron-sized ZnO features. By introducing a centrifugal force, the shear-thinning behavior of the suspensions is utilized, and the cavity filling process and the diffusion of trapped air out of the features are accelerated. The drying shrinkage is decreased by increasing the density of the wet nanoparticle packing from the centrifugal process. The centrifugal force improves the fidelity of all the designed features. ZnO ridges from 0.4μm to 2μm size and rods of 1.6μm size are prepared successfully. The wide applicability of this strategy has been demonstrated by preparing ZrO2 features via the same method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.