Abstract
This study systematically investigates the statistics of the centreline small-scale turbulence of a circular jet issuing from a smooth contraction nozzle. Detailed velocity measurements were performed for the exit Reynolds number of Re=20100, where Re≡Ujd /ν with Uj being the exit mean velocity, d the nozzle diameter and ν the kinematic viscosity. After effectively filtering out high frequency noises, statistical properties of the small-scale turbulence were obtained appropriately; those properties include turbulence energy dissipation rate, Kolmogorov length scale, Taylor scale, turbulence Reynolds number, skewness and flatness of the velocity derivative. It is observed that these properties satisfy their self-preserving relations in the far field. It is also revealed that the small-scale turbulence reaches the self-preserving state earlier than does the large-scale motion. Besides, the smallest-scale turbulence depends least on the initial and boundary conditions and therefore behaves most universally across different flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.