Abstract

Barite occurrences related to the Cenozoic (Late Alpine) low-temperature hydrothermal activity are present in the continental Ohře (Eger) Rift area. A specific, Ra-bearing type of barite has been known under the name “radiobarite” from this area since 1904. Revision of 12 localities revealed the presence of alleged radiobarite only in the Teplice (Lahošť–Jeníkov) and Karlovy Vary areas. Barite from other localities is radium-poor. Barite crystals showing concentric oscillation colour zoning totally prevail. Isomorphous substitution of Sr ( X×10 −1 to X×wt%), Ca ( X×10 −2 wt%) and Fe ( X×10 −1 wt%) for Ba was proved. Average SrO contents of 0.4 wt% are markedly exceeded in some samples from Lahošť–Jeníkov (max. 3.2 wt%) and Karlovy Vary (max. 4.9 wt%). Besides inclusions of stoichiometric iron disulphide, the same samples also contain iron disulphides with unusual high contents of Co (max. 12.2 wt%) and Ni (max. to 8.4 wt%). Specific activity of 238U in the studied barites is very low while that of 226Ra reaches 8 Bq/g in several samples. Therefore, 226Ra is not in equilibrium with its parent uranium. These “radiobarites” or their parts must be therefore relatively young, not older than 10–15 ka. Very low uranium contents (<0.4 ppm) were also confirmed by neutron activation analyses of barite samples. Unit-cell dimensions refined from X-ray powder diffraction data do not show any systematic variation with the measured chemical composition. Their values agree with the data given in the literature. Reflection half-widths, however, seem to correlate with chemistry. Peaks are wider in samples from Lahošť–Jeníkov and Karlovy Vary. Sulphur and oxygen stable isotope compositions of the Cenozoic barite mineralization of Teplice area are very uniform ( δ 34S values between 3.9‰ and 7.1‰ CDT, and δ 18O values between 6.1‰ and 7.7‰ SMOW), while the barites of Děc˘ín area show more variable sulphur sources. Sulphate derived from sediments of the Tertiary Most Basin seems to dominate for the Teplice area, while Cretaceous sediments are a more probable sulphur source in the Děc˘ín area. Calculation of oxygen isotope composition of hydrothermal fluids based on fluid inclusion homogenization temperatures and barite δ 18O data shows δ 18O fluid values in the range of meteoric waters or δ 18O – shifted deep circulating meteoric or basinal waters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.