Abstract
The watershed transform has been used as a powerful morphological segmentation tool in a variety of image processing applications. This is because it gives a good segmentation result if a topographical relief and markers are suitably chosen for different type of images. This paper proposes a parallel implementation of the watershed transform on the cellular neural network (CNN) universal machine, called cellular watersheds. Owing to its fine grain architecture, the watershed transform can be parallelized using local information. Our parallel implementation is based on a simulated immersion process. To evaluate our implementation, we have experimented on the CNN universal chip, ACE16k, for synthetic and real images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.