Abstract

It is important to understand the safety issue and cell interaction pattern of polyelectrolyte microcapsules with different deformability before their use in biomedical applications. In this study, SiO2, poly(sodium-p-styrenesulfonate) (PSS) doped CaCO3 and porous CaCO3 spheres, all about 4μm in diameter, were used as templates to prepare microcapsules with different inner structure and subsequent deformability. As a result, three kinds of covalently assembled poly(allylaminehydrochloride)/glutaraldehyde (PAH/GA) microcapsules with similar size but different deformability under external osmotic pressure were prepared. The impact of different microcapsules on cell viability and functions are studied using smooth muscle cells (SMCs), endothelial cells (ECs) and HepG2 cells. The results demonstrated that viabilities of SMCs, ECs and HepG2 cells were not significantly influenced by either of the three kinds of microcapsules. However, the adhesion ability of SMCs and ECs as well as the mobility of SMCs, ECs and HepG2 cells were significantly impaired after treatment with microcapsules in a deformability dependent manner, especially the microcapsules with lower deformability caused higher impairment on cell functions. The cellular uptake kinetics, uptake pathways, intracellular distribution of microcapsules are further investigated in SMCs to reveal the potential mechanism. The SMCs showed faster uptake rate and exocytosis rate of microcapsules with lower deformability (Cap@CaCO3/PSS and Cap@CaCO3), leading to higher intracellular accumulation of microcapsules with lower deformability and possibly larger retardation of cell functions. The results pointed out that the deformability of microcapsules is an important factor governing the biological performance of microcapsules, which requires careful adjustment for further biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.