Abstract

Cellular transplantation for cardiac repair has emerged as an exciting treatment option for patients with myocardial infarction (MI) and heart failure. Animal models of post-infarction left ventricular remodeling have demonstrated an improvement in left ventricular (LV) function, decrease in scar size, and amelioration of adverse cardiac remodeling after stem cell transplantation. These beneficial effects occur despite minimal engraftment and negligible differentiation of transplanted cells. Evidence of the heart capability to self-renew continues to mount; however, the extent to which this occurs is still unclear. Although there is a specific population of cardiac stem cells capable of differentiating into cardiomyocytes, they alone are not capable of fully regenerating tissue damaged by MI. Therefore, paracrine mechanisms may be responsible for activating endogenous stem cells to promote regeneration and prevent apoptosis. These structural beneficial effects may reduce regional wall stresses, consequently leading to long-term host myocardium gene/protein expression changes, which may subsequently result in improvement in LV function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.