Abstract

Cellular senescence can be activated by various types of stressful stimuli, including telomere shortening, oncogenic or tumor suppressor signals, and DNA damage. Progressive telomere shortening in successive cell divisions induces senescence due to the loss of terminal sequences during DNA replication. Maintenance of the telomere sequences at human chromosome ends is essential for immortalized cells to escape from the normal limitations of the proliferation capacity. In this article, the molecular and functional details of telomere maintenance and cellular senescence are reviewed, including the signals that trigger senescence, telomere capping, and the telomere length maintenance mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.