Abstract

The effect of chronic hyperglycemia and polyol pathway activation on the Schwann cell has not been resolved although injury to this cell has long been suspected in diabetic neuropathy. Hyperglycemia, resulting from galactose intoxication of four months duration, induces dose-dependent accumulations of endoneurial fluid sodium and chloride that are linked to polyol pathway activity and associated with dose-dependent increases in sciatic nerve water content, endoneurial fluid pressure and (Na+, K+)-ATPase activity. In order to understand the impact of these changes on the nerve microenvironment, cellular elements of the endoneurium were quantitatively and qualitatively assessed in rats receiving 0%, 10%, 20% or 40% galactose diets. After four months of galactose intoxication, dose-dependent changes in the size distribution of myelinated nerve fibers were apparent. A shift in size-frequency histograms of galactose-intoxicated animals towards smaller fibers was accompanied by a decrease in axon diameter and the volume fraction ratio of axon to myelinated nerve fibers. In the sciatic nerve of all 40% galactose-fed rats examined by electron microscopy, Schwann cells of myelinated fibers showed both reactive and degenerative changes. Demyelination was preceded by splitting at the intraperiod line. Remyelination was identified by axons with disproportionately thin myelin sheaths. Axonal dystrophy and degeneration were infrequently seen, but there was axonal regeneration. Dose-dependent increases in mast cell number were observed with degranulation apparent in rats receiving 20% and 40% galactose. Endothelial cell number and basal lamina thickness were increased in the endoneurial vessels of galactose-intoxicated rats. Increased cytoplasmic area and degenerative changes in pericytes were also noted. These observations indicate that significant morphologic changes accompany the hyperosmotic imbalance resulting from galactose intoxication of four months duration. Schwann cell injury and demyelination are present in a disorder linked to polyol metabolism since aldose reductase, the anabolic enzyme of the polyol pathway, is localized to this myelin-forming cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.