Abstract

Hypoxia elicits a variety of adaptive responses at the tissue level, at the cellular level, and at the molecular level. A physiological response to hypoxia requires the existence of an O(2) sensor coupled to a signal transduction system, which in turn activates the functional response. Although much has been learned about the signaling systems activated by hypoxia, no consensus exists regarding the nature of the underlying O(2) sensor or whether multiple sensors exist. Among previously considered mechanisms, heme proteins have been suggested to undergo allosteric modification in response to O(2) binding or release at different PO(2) levels. Other studies suggest that ion channels may change conductance as a function of PO(2), allowing them to signal the onset of hypoxia. Still other studies suggest that NADPH oxidase may decrease its generation of reactive O(2) species (ROS) during hypoxia. Recent data suggest that mitochondria may function as O(2) sensors by increasing their generation of ROS during hypoxia. These oxidant signals appear to act as second messengers in the adaptive responses to hypoxia in a variety of cell types. Such observations contribute to a growing awareness that mitochondria do more than just generate ATP, in that they initiate signaling cascades involved in adaptive responses to hypoxia and that they participate in the control of cell death pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.