Abstract

Getting gray hair is part of the natural progression of aging. People expect it and they can change their hair color, if they choose. People also expect increases in memory lapses and learning difficulties as they get older. However, unlike hair color, there is no magic cure or option to fix learning and memory difficulties, because the cellular mechanisms of learning and aging in all the different types of neurons throughout the brain have yet to be discovered. This review describes our efforts to identify a cellular biomarker in hippocampal pyramidal neurons that has been demonstrated to reliably change with learning and with aging - the postburst afterhyperpolarization. We propose that this biomarker, which plays a critical role in regulating neuronal excitability, can be used as a benchmark for future studies in order to understand and identify the cellular mechanisms of learning and aging in the hippocampus, as well as in other cortical regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.