Abstract

Cellular inhibitors of apoptosis proteins (cIAPs) are essential regulators of cell death and immunity. The corresponding contributions of IAPs to infectious disease outcomes are relatively unexplored. We find that mice deficient in cIAP2 exhibit increased susceptibility and mortality to influenza A virus infection. The lethality was not due to impaired antiviral immune functions, but rather because of death-receptor-induced programmed necrosis of airway epithelial cells that led to severe bronchiole epithelial degeneration, despite control of viral replication. Pharmacological inhibition of RIPK1 or genetic deletion of Ripk3, both kinases involved in programmed necrosis, rescued cIAP2-deficient mice from influenza-induced lethality. Genetic deletion of the deathreceptor agonists Fas ligand or TRAIL from the hematopoietic compartment also reversed the susceptibility of cIAP2-deficient mice. Thus, cIAP2-dependent antagonism of RIPK3-mediated programmed necrosis critically protects the host from influenza infection through maintenance of pulmonary tissue homeostasis rather than through pathogen control by the immune system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.