Abstract

Based on the thermal activation theory and curvature-driven mechanism, a 2D cellular automaton model with different state transition rules was built. Validity of the model was proved by the shrinking of circular grains. Grain growth of high temperature austenite was simulated by this model; the morphology, grain size distribution, topological aspects, and local kinetics of austenite grain growth were analyzed under different simulation time. Among the grains with different sides, the 6-sided grains are the most common and 5-sided grains are the second most common. The grains with more than six sides will grow and grains with less than six sides will shrink, while the 6-sided grains will neither grow nor shrink. The kinetics of normal grain growth follows the Burke equation and the growth exponent at different temperatures and activation energies has been researched.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.