Abstract

A cellular automata (CA) model of liquid water has been used to study self-diffusion and the diffusion of a solute. The influences of temperature and solute hydropathic state are modeled as variables in this process. The self-diffusion model correlates very well with earlier experimental data. The diffusion of a solute experiences variation with temperature and its hydropathic states. These influences are found to relate to models of free hydroxy groups and the average cavity cluster size in bulk water. These preliminary models serve as the basis for modeling solute diffusion for specific contaminants of interest (such as heavy metals like uranium) in a water system, and addressing its migration patterns with water relative to temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.