Abstract

Bioartificial tissues are useful model systems for studying cell and extra-cellular matrix mechanics. These tissues provide a 3D environment for cells and allow tissue components to be easily modified and quantified. In this study, we fabricated bioartificial tissue rings from a 1 ml solution containing one million cardiac fibroblasts and 1 mg collagen. After 8 days, rings compacted to <1% of original volume and cell number increased 2.4 fold. We initiated continuous cyclic stretching of the rings after 2, 4, or 8 days of incubation, while monitoring the tissue forces. Peak tissue force during each cycle decreased rapidly after initiating stretch, followed by further slow decline. We added 2 μM Cytochalasin-D to some rings prior to initiation of stretch to determine the force contributed by the matrix. Cell force was estimated by subtracting matrix force from tissue force. After 12 h, matrix force-strain curves were highly nonlinear. Cell force-strain curves were linear during loading and showed hysteresis indicating viscoelastic behavior. Cell stiffness increased with stretching frequency from 0.001–0.25 Hz. Cell stiffness decreased with stretch amplitude (5–25%) at 0.1 Hz. The trends in cell stiffness do not fit simple viscoelastic models previously proposed, and suggest possible strain-amplitude related changes during cyclic stretch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.