Abstract

Visualization of the intracellular constituents of individual bacteria while performing as live biocatalysts is in principle doable through more or less sophisticated fluorescence microscopy. Unfortunately, rigorous quantitation of the wealth of data embodied in the resulting images requires bioinformatic tools that are not widely extended within the community-let alone that they are often subject to licensing that impedes software reuse. In this context we have developed CellShape, a user-friendly platform for image analysis with subpixel precision and double-threshold segmentation system for quantification of fluorescent signals stemming from single-cells. CellShape is entirely coded in Python, a free, open-source programming language with widespread community support. For a developer, CellShape enhances extensibility (ease of software improvements) by acting as an interface to access and use existing Python modules; for an end-user, CellShape presents standalone executable files ready to open without installation. We have adopted this platform to analyse with an unprecedented detail the tridimensional distribution of the constituents of the gene expression flow (DNA, RNA polymerase, mRNA and ribosomal proteins) in individual cells of the industrial platform strain Pseudomonas putida KT2440. While the CellShape first release version (v0.8) is readily operational, users and/or developers are enabled to expand the platform further.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.