Abstract

Prodrug conversion is a promising approach to cytotoxic gene therapy if an efficient transfer of the generated drug to adjacent cells can be achieved. To maximize the efficacy of this strategy we sought to develop a system that is based on a human enzyme, acts extracellularly yet in close vicinity of the transduced cell and can be used with multiple prodrugs. Results obtained with a secreted version of human beta-glucuronidase suggested that this enzyme could be a suitable candidate, although a more stringent retention of the enzyme at the site of the producer cell, such as its attachment to the cell surface, would be desirable. Here, we show that the fusion of the transmembrane domain of the human PDGF receptor to a C-terminally truncated form of human beta-glucuronidase results in its surface accumulation at high steady-state levels. Using a doxorubicin prodrug, we demonstrate that this GDEPT system produces a strong bystander effect and has potent antitumor activity in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.