Abstract

To investigate the effect of the number and distribution of d-amino acids introduced into non-cell-selective alpha-helical antimicrobial peptides on the cell selectivity, protease stability and anti-inflammatory activity, we synthesized an 18-meric Leu/Lys-rich alpha-helical model peptide (K(9)L(8)W) and d-amino acid-containing diastereomeric peptides. Increasing in cell selectivity of the peptides was increased in parallel with increasing in the number of d-amino acids introduced. Despite having the same number of d-amino acids, D(9)-K(9)L(8)W-1 had better cell selectivity than D(9)-K(9)L(8)W-2, indicating that a dispersed distribution of d-amino acids in diastereomeric peptides is more effective for cell selectivity than their segregated distribution. D(3)-K(9)L(8)W-2, D(6)-K(9)L(8)W, D(9)-K(9)L(8)W-1 and D(9)-K(9)L(8)W-2 showed complete resistance to tryptic digestion. Furthermore, K(9)L(8)W and all of its diastereomeric peptides significantly inhibited nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) mRNA expression and tumor necrosis factor-alpha (TNF-alpha) release in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells at a lower concentration than bactericidal concentration. The order of anti-inflammatory activity for the peptides was K(9)L(8)W approximately D(3)-K(9)L(8)W-1 approximately D(3)-K(9)L(8)W-2 approximately D(6)-K(9)L(8)W approximately D(9)-K(9)L(8)W-2>D(4)-K(9)L(8)W>D(9)-K(9)L(8)W-1. Increasing in hydrophobicity or alpha-helicity of the peptides was more closely correlated with increasing in hemolytic activity and anti-inflammatory activity than antimicrobial and LPS-disaggregation activities. Collectively, we successfully developed several d-amino acid-containing antimicrobial peptides (D(4)-K(9)L(8)W, D(6)-K(9)L(8)W and D(9)-K(9)L(8)W-1) with good cell selectivity, protease stability and potent anti-inflammatory activity. These antimicrobial peptides could serve as templates for the development of peptide antibiotics for the treatment of sepsis, as well as microbial infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.