Abstract

The intrinsic polarity of migrating cells is regulated by spatial distributions of protein activity. Those proteins (Rho-family GTPases, such as Rac and Rho) redistribute in response to stimuli, determining the cell front and back. Reaction-diffusion equations with mass conservation and positive feedback have been used to explain initial polarization of a cell. However, the sensitivity of a polar cell to a reversal stimulus has not yet been fully understood. We carry out a PDE bifurcation analysis of two polarity models to investigate routes to repolarization: (1) a single-GTPase ("wave-pinning") model and (2) a mutually antagonistic Rac-Rho model. We find distinct routes to reversal in (1) vs. (2). We show numerical simulations of full PDE solutions for the RD equations, demonstrating agreement with predictions of the bifurcation results. Finally, we show that simulations of the polarity models in deforming 1D model cells are consistent with biological experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.