Abstract

This paper reports a precise, live cell-patterning method by means of patterning a silicon or glass substrate with alternating cytophilic and cytophobic self-assembled monolayers (SAMs) deposited via molecular vapor deposition. Specifically, a stack of hydrophobic heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane SAMs and a silicon oxide adhesion layer were patterned on the substrate surface, and a hydrophilic SAM derived from 3-trimethoxysilyl propyldiethylenetriamine was coated on the remaining non-treated areas on the substrate surface to promote cell growth. The primary characteristics of the reported method include: (i) single-cell resolution; (ii) easy alignment of the patterns with the pre-existing patterns on the substrate; (iii) easy formation of nanoscale patterns (depending on the exposure equipment); (iv) long shelf life of the substrate pattern prior to cell culturing; (v) compatibility with conventional, inverted, optical microscopes for simple visualization of patterns formed on a glass wafer; and (vi) the ability to support patterned cell (osteoblast) networks for at least 2weeks. Here, we describe the deposition technique and the characterization of the deposited layers, as well as the application of this method in the fabrication of multielectrode arrays supporting patterned neuronal networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.