Abstract

Background: Single chain antibody (scFv) has shown interesting results in cancer immunotargeting approaches, due to its advantages over monoclonal antibodies. Regeneration and tolerance factor (RTF) is one of the most important regulators of extracellular and intracellular pH in eukaryotic cells. In this study, the inhibitory effects of a specific anti-RTF scFv were investigated and compared between three types of prostate cancer and two types of glioblastoma cells. Methods: A phage antibody display library of scFv was used to select specific scFvs against RTF using panning process. The reactivity of a selected scFv was assessed by phage ELISA. The anti-proliferative and apoptotic effects of the antibody on prostate cancer (PC-3, Du-145 and LNCaP) and glioblastoma (U-87 MG and A-172) cell lines were investigated by MTT and Annexin V/PI assays. Results: A specific scFv with frequency 35% was selected against RTF epitope. This significantly inhibited the proliferation of the prostate cells after 24 h. The percentages of cell viability (using 1000 scFv/cell) were 52, 61 and 73% for PC-3, Du-145 and LNCaP cells, respectively, compared to untreated cells. The antibody (1000 scFv/cell) induced apoptosis at 50, 40 and 25% in PC-3, Du-145 and LNCaP cells, respectively. No growth inhibition and apoptotic induction was detected for U-87 and A172 glioblastoma cells. Conclusions: Anti-RTFscFv significantly reduced the proliferation of the prostate cancer cells. The inhibition of cell growth and apoptotic induction effects in PC-3 cells were greater than Du-145 and LNCaP cells. This might be due to higher expression of RTF antigen in PC-3 cells and/or better accessibility of RTF to scFv antibody. The resistance of glioblastoma cells to anti-RTF scFv offers the existence of mechanism(s) that abrogate the inhibitory effect(s) of the antibody to RTF. The results suggest that the selected anti-RTF scFv antibody could be an effective new alternative for prostate cancer immunotherapy.

Highlights

  • Prostate cancer is the most prevalent malignancy and the second leading cause of cancer-related death among men in the USA and developing countries[1]

  • Phage ELISA To evaluate the reactivity of the scFv antibody to the Regeneration and tolerance factor (RTF) peptide, phage ELISA was performed

  • Recombination DNA technology enables the production of human scFv fragments with desirable properties for tissue penetration; providing immunotherapeutic reagents for targeted therapy of cancers[25,26]

Read more

Summary

Introduction

Prostate cancer is the most prevalent malignancy and the second leading cause of cancer-related death among men in the USA and developing countries[1]. The inhibitory effects of a specific anti-RTF scFv were investigated and compared between three types of prostate cancer and two types of glioblastoma cells. The anti-proliferative and apoptotic effects of the antibody on prostate cancer (PC-3, Du-145 and LNCaP) and glioblastoma (U-87 MG and A-172) cell lines were investigated by MTT and Annexin V/PI assays. Results: A specific scFv with frequency 35% was selected against RTF epitope This significantly inhibited the proliferation of the prostate cells after 24 h. The inhibition of cell growth and apoptotic induction effects in PC-3 cells were greater than Du-145 and LNCaP cells This might be due to higher expression of RTF antigen in PC-3 cells and/or better accessibility of RTF to scFv antibody. The results suggest that the selected anti-RTF scFv antibody could be an effective new alternative for prostate cancer immunotherapy

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.