Abstract
The fragmentation patterns of cell-free DNA (cfDNA) in plasma can potentially be utilized as diagnostic biomarkers in liquid biopsy. However, our knowledge of this biological process and the information encoded in fragmentation patterns remains preliminary. Here, we investigated the cfDNA fragmentomic characteristics against nucleosome positioning patterns in hematopoietic cells. cfDNA molecules with ends located within nucleosomes were relatively shorter with altered end motif patterns, demonstrating the feasibility of enriching tumor-derived cfDNA in patients with cancer through the selection of molecules possessing such ends. We then developed three cfDNA fragmentomic metrics after end selection, which showed significant alterations in patients with cancer and enabled cancer diagnosis. By incorporating machine learning, we further built high-performance diagnostic models, which achieved an overall area under the curve of 0.95 and 85.1% sensitivity at 95% specificity. Hence, our investigations explored the end characteristics of cfDNA fragmentomics and their merits in building accurate and sensitive cancer diagnostic models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.