Abstract
Dendritic cells (DCs) are prime targets for vaccination and immunotherapy. However, limited control over antigen presentation at a desired maturation status in these plastic materials remains a fundamental challenge in efficiently orchestrating a controlled immune response. DC-derived extracellular vesicles (EVs) can overcome some of these issues, but have significant production challenges. Herein, we employ a unique chemically-induced method for production of DC-derived extracellular blebs (DC-EBs) that overcome the barriers of DC and DC-derived EV vaccines. DC-EBs are molecular snapshots of DCs in time, cell-like particles with fixed stimulatory profiles for controlled immune signalling. DC-EBs were produced an order of magnitude more quickly and efficiently than conventional EVs and displayed stable structural integrity and antigen presentation compared to live DCs. Multi-omic analysis confirmed DC-EBs are majorly pure plasma membrane vesicles that are homogeneous at the single-vesicle level, critical for safe and effective vaccination. Immature vs. mature molecular profiles on DC-EBs exhibited molecularly modulated immune responses compared to live DCs, improving remission and survival of tumor-challenged mice via generation of antigen-specific T cells. For the first time, DC-EBs make their case for use in vaccines and for their potential in modulating other immune responses, potentially in combination with other immunotherapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.