Abstract
Structural studies provide insight into the mechanisms governing a checkpoint in cell division that prevents chromosomes from segregating before they are properly aligned on a structure called the mitotic spindle. See Article p.431 The spindle assembly checkpoint (SAC) is a surveillance mechanism that detects incorrect chromatid kinetochore attachments and delays chromosome segregation by generating a 'wait anaphase' signal. It is activated via the mitotic checkpoint complex (MCC), which inhibits the anaphase-promoting complex (APC/C), a multimeric E3 ligase. Here, David Barford and colleagues use cryo-electron microscopy to determine near-atomic resolution structures of the APC/C–MCC complex. The structures reveal how MCC interacts with and represses APC/C by obstructing substrate recognition and suppressing E3 ligase activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.