Abstract

In mammalian cells, the inheritance of the Golgi apparatus into the daughter cells during each cycle of cell division is mediated by a disassembly and reassembly process, and this process is precisely controlled by phosphorylation and ubiquitination. VCIP135 (valosin-containing protein p97/p47 complex-interacting protein, p135), a deubiquitinating enzyme required for p97/p47-mediated postmitotic Golgi membrane fusion, is phosphorylated at multiple sites during mitosis. However, whether phosphorylation directly regulates VCIP135 deubiquitinase activity and Golgi membrane fusion in the cell cycle remains unknown. We show that, in early mitosis, phosphorylation of VCIP135 by Cdk1 at a single residue, S130, is sufficient to inactivate the enzyme and inhibit p97/p47-mediated Golgi membrane fusion. At the end of mitosis, VCIP135 S130 is dephosphorylated, which is accompanied by the recovery of its deubiquitinase activity and Golgi reassembly. Our results demonstrate that phosphorylation and ubiquitination are coordinated via VCIP135 to control Golgi membrane dynamics in the cell cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.