Abstract

Cancer recurrence is initiated by the drug resistance quiescent cells (DRC). The anticancer treatment eliminates cells in the cell cycle (G1/S/G2/M), which is drug-sensitive (DSCs) whereas the quiescent (G0) cells are drug- resistant. It is for this reason, understanding quiescent (G0) cell biology is critical for dealing with recurrence of cancer. Sensitization (SS) is a process by virtue of which transition of G0 to drug-sensitive state is done artificially so that recurrence is minimized. In this review, the data were extracted from NCBI, PubMed literature search option which was analyzed and subsequently interpreted by combining principles of cancer therapy, quiescent biology, and neurobiology. In this review, a novel hypothesis is being presented regarding existence of different subtypes of G0 in human tumor cells (G01, G02, G03 …. G0n). Second, a new hypothesis is proposed which might be responsible for existence of heterogeneous cell types in the tumor tissue as observed in early embryonic neuronal biology. The morphogen gradient in the form of signaling molecules secreted from the source activates transcription factors and further interplay between these transcription factors in the different permutation and combination upregulate genes and thus generate cell diversity. It is likely that same kind of mechanism might be in action during development and maturation of tumor generating heterogeneous cell types in the tumor. Third, a few potential novel sensitization agents are being proposed here has been proposed here which is open for further investigation which includes c Myc, Dyrk1B, MARCKS, cycMs3, ERK,p38, HBx, and MT5 which could pave the way for better therapeutic strategy for the treatment of recurrence of the tumor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.