Abstract
With the expansion of Internet technology and network scale, the data volume of base station traffic also shows explosive growth. Predicting base station network traffic has high practical guiding significance for network research, management and control. Aiming at the problem of accurate prediction of base station traffic, this paper proposes a gated recurrent unit neural network model (GRU model) based on neural network algorithm, which can predict the base station traffic data according to the periodicity and fluctuating characteristics of base station traffic data. After experimental verification, it shows that compared with the traditional time series prediction model AR model, ARIMA model also has the convolutional neural network model based on neural network algorithm. This method has higher accuracy and smaller experimental error in mobile communication traffic prediction. The MAE value is optimized by 27.04%, 37.89% and 9.12%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.